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Theory of the locomotion of nematodes
Dynamics of undulatory progression on a surface

Ernst Niebur and Paul Erdos
Institute of Theoretical Physics, University of Lausanne, CH-1 01 5 Lausanne, Switzerland

ABSTRACT We develop a model of the undulatory locomotion of nematodes, in particular that of Caenorhabditis elegans, based on
mechanics. The model takes into account the most important forces acting on a moving worm and allows the computer simulation
of a creeping nematode. These forces are produced by the interior pressure in the liquid-filled body cavity, the elasticity of the
cuticle, the excitation of certain sets of muscles and the friction between the body and its support.
We propose that muscle excitation patterns can be generated by stretch receptor control. By solving numerically the equations

of motion of the model of the nematode, we demonstrate that these muscle excitation patterns are suitable for the propulsion of the
animal.

INTRODUCTION

We present here a theoretical study of the control and
mechanism of undulatory motion of nematodes (round
worms) on a solid surface. In particular, we study the
mechanical forces which are related to undulatory loco-
motion. In a related work, we have studied the propaga-
tion of neural signals and the control of the somatic
motor neurons in nematodes (see Niebur and Erdos,
1991, and the Appendix of this paper). The output of the
motor nervous system consists of patterns of muscle
excitation which are suitable for generating the wavelike
body shape and for propelling the body in a given
direction. Because of Gray's pioneering work (Gray,
1953), we know that for creeping motion on a solid
surface, it is necessary that the radius of curvature of the
body vary along the body: only in this case can muscular
forces produce a forward thrust. A simple explanation of
this fact may be found in (Erdos and Niebur, 1990). The
mechanics of undulatory locomotion is an interesting
biological problem in itself. This mode of locomotion is
used in a great variety of environments by thousands of
animal species, varying in size from protozoa to snakes.
Undulatory locomotion is also important in other fields,
e.g., in robotics. There are environments which are not
easily accessible (e.g., the interior of complex tube
systems) and where a vermiform robot can move by
undulatory propulsion (Niebur and Erd6s, 1991).

In the next section, we present the locomotive appara-
tus of Caenorhabditis elegans (C. elegans). In sections
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following we present our model of the nematode body, a
description of the mechanical forces evoked by a nema-
tode when it is creeping over a solid surface and a
description of the trajectory control. We then establish
the equations of motion of the body and present an
implementation of the model on a computer which
allows us to simulate the locomotion of nematodes.
Finally, the results of the computer simulation are
shown and discussed and we present the conclusions.

LOCOMOTIVE APPARATUS OF C. ELEGANS

Environment
The natural habitat of C. elegans consists of the inter-
stices between the particles of the soil, which are
covered by a water film. C. elegans lives in this water film.
In the laboratory, C. elegans are usually kept in Petri
dishes on an agar layer (see Brenner, 1974 for details).
Although the worms are able to penetrate into the agar
gel, they usually stay on the surface.
The surface is covered with a water film whose

thickness depends on the concentration of the agar. If
the thickness of the water film is less than the body
diameter of a nematode, a surface tension results which
presses the worm against the agar surface. A groove is
produced, which partially encloses the body of the worm
and enables it to exert lateral forces (perpendicular to
the body surface) against the walls of the groove (Wal-
lace, 1969). If the groove is sufficiently profound, no
lateral movement of the worm's body is possible and
each part of the worm is obliged to follow the immedi-
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ately adjacent part of the body. We call this movement
"creeping."
On more humid agar, the water film is thicker and the

surface tension which presses the worm into the agar is
weaker. As a result, the groove is shallower and the
lateral forces are able to cause lateral movements,
consequently the worm "slips." If the thickness of the
water film exceeds the body diameter, the worm is totally
immersed in the water and its swims.

Consider the forward movement of a nematode in the
three environments, which lead to creeping, creeping
with slipping, and swimming. Because C. elegans is
normally lying on its side, the concepts dorsal/ventral
are equivalent to left/right. C. elegans moves actively by
throwing its body in dorso-ventral bends, which give the
worm a sinusoidal shape. When creeping, the head of
the worm pursues a sinusoidal curve and all other parts
of its body follow. The waves, called "muscular waves,"
which are formed by the body, are stationary with
respect to the support. They travel with the same
velocity backwards in the reference frame of the worm as
the worm travels forwards in the reference frame of the
support. When the worm moves with lateral slipping, the
absolute value of the velocity of the muscular waves is
greater than the speed of the worm. When the worm swims,
it is observed that the velocity of the muscular waves is much
greater than that of the worm (Gray and Lissmann, 1964).

Hydrostatic skeleton
The body of an adult C. elegans has approximately the
shape of a cylinder with a diameter of -80 ,um and
length 1 mm. It is ensheathed by an elastic cuticle whose
inner surface is covered by a muscle layer, which will be
described in more detail below. This layer encloses the
"pseudo-coelom," a nonsegmented cavity which con-
tains the intestine, the gonads, and liquid. The liquid is
under considerable pressure with respect to the exterior. In
the larger nematode Ascans lhnbricoides, the pressure can
be measured experimentally. A typical value is 10' Pa, and in
extreme cases, 3 * 104 Pa (Lee and Atkinson, 1976).

In the nematodes, the body muscles deform the elastic
cuticle by exerting their contractive force against the
interior pressure. When the muscles relax, the interior
pressure restores the original length of the muscles.
Following Harris and Crofton, (1957), we will call this
structure the "hydrostatic skeleton."

Inextensible fibers in the nematode
cuticle
The cuticles of adult large Ascarids contain fibers which
are practically inextensible and which spiral in three

layers geodetically around the body. It is tempting to
assume that the mechanical properties of the cuticle are
determined by these fibers, because this would yield a
solid base for a quantitative theory of the cuticle
deformations. It was believed that the inextensible fibers
are present in the cuticles of all nematodes (Harris and
Crofton, 1957). Later, their presence in the cuticles of
small nonparasitic species was doubted (Bird, 1971).
More recently, fibers were found in adult C. elegans,
which is a small, nonparasitic nematode, but not in
Dauerlarvae of C. elegans (Edgar et al., 1982). These
larvae move, however, in the same way as the adults do.
Other workers (Thust, 1966; Morseth and Soulsby, 1969;
Fredericksen and Specian, 1981) have shown that fibers
are present in the cuticles of second and third stage
larvae of Ascaris 1., but that the fibers are arranged
randomly and not in layers of geodetical spirals.
To summarize, there are several examples where

either no inextensible fibers are found in the cuticle of
nematodes or where these fibers are not arranged in
structured layers. In all these cases, the animals move by
undulatory locomotion. We conclude that a theoretical
explanation of this locomotion cannot be based on the
existence of inextensible fibers in the cuticle. In the
section on computer simulation, we will present a
realistic physical model of the nematode body.

Musculature used for locomotion
It was noted above that the interior of the cuticle is
covered by a layer of muscle cells which are used for the
locomotion. The contractile parts of all these muscle
cells (95 in C. elegans, - 50,000 inAscaris l. ) are parallel
to the long axis of the worm; there are no circular
muscles. The musculature is divided in two half-
cylinders, one of which is innervated by the dorsal motor
neurons and the other one by the ventral motor neurons.
There is no finer subdivision of the innervation. This
structure explains the observation that the body of
nematodes moves by dorso-ventral bends. The muscles
of the head receive a more detailed and more compli-
cated innervation (White et al., 1986), which permits it
to move outside the dorso-ventral plane.

In nematodes, the muscle cells send out processes to
the neural process tracts, where they interdigitate exten-
sively and make neuromuscular junctions (NMJs) with
the neurons. In the proximity of the NMJs, the muscle
cell processes are coupled electrically, and graded action
potentials are produced in this region, which are corre-
lated with muscle contractions (Weisblat and Russell,
1976). For this reason, it has been proposed that the
muscle activity is under myogenic control (Crofton,
1971).
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This hypothesis is not necessary. In fact, it has been
suggested that the electrical coupling between muscle
processes could compensate for differences of excitation
between adjacent cells that are too vast to allow smooth
locomotion (Weisblat and Russell, 1976), or that the
coupling compensates for irregularities in the innerva-
tion of neighboring muscle arms (Stretton, 1976).

Also, the action potentials generated in the muscle
cells are necessary if the muscles are controlled by the
neurons. It is not possible to transmit an appreciable
voltage change from the NMJs to the muscle cells via the
thin muscle cell processes by means of electrotonic
voltage spread alone. The reason for this is the imped-
ance mismatch between the high-ohmic muscle cell
processes and the low-ohmic soma and contractile parts
of the cell.

For these reasons, and in agreement with other
authors (e.g., Johnson and Stretton, 1980), we make the
hypothesis that it is the neural system of the worm which
controls the locomotion. The muscle cells will be consid-
ered as simple mechanical elements, which contract
when they are excited by the neurons.

Swimming of small nematodes
Theories exist which explain the swimming of fish or
flagella (see, e.g., Nachtigall, 1983; Brokaw, 1985; Rik-
menspoel, 1978); however, it is not possible to use these
theories for analyzing the swimming of small nematodes
like C. elegans.
The character of the forces which act on a body that is

immersed in a liquid is determined by the Reynolds
number NR, which represents the ratio between the
inertial forces and the viscous forces acting on the
immersed body. NR is defined by

NR = Lvp/~,

where the symbols have the following meaning: L: one of
the physical dimensions of the immersed body; v: rela-
tive velocity between the liquid and the immersed body;
p: density of the liquid; ,u: viscosity of the liquid.
Table 1 shows v, L, and NR (calculated by us) for a

flagellum, a fish considered typical, and for C. elegans, all
swimming in water. For a swimming fish, the viscous
forces can be neglected, and for the flagellum, the
inertial forces can be neglected. For a small nematode
like C. elegans, NR is of order unity, and neither the
viscous nor the inertial forces can be neglected. The
analysis of the swimming of small nematodes is thus
more complicated than it is for fish or flagella. For this
reason, we will concentrate in this work on the creeping
motion of nematodes on a solid surface.
Gray and Lissmann (1964) studied the behavior of a

TABLE i Reynolds number NR of three organisms swimming
in water

v L
Organism [m/s] [m] NR

(a) Flagellum (Cha-
etopterus) 1 10-4 31 -10-6 3. 10'

(b) C elegans 2 .10' lo- 2
(c) Fish (typical) 10-1 10- 104

v: velocity of locomotion; L: length of the body; (a) v and L from
Brokaw (1985), Table 1; (b) (Niebur and Erdos, 1988a, b). Similar
velocities have been observed for other nematodes of comparable size
(Gray and Lissmann, 1964).

rubber cylinder which swims in water. According to their
description of the cylinder, its Reynolds number must
have been > 01. These authors used the results of
experiments with the rubber cylinder to draw conclu-
sions about the swimming of small nematodes, whose
body sizes and velocities are comparable to those shown
for C. elegans in Table 1. A reduced or enlarged model of
a physical system shows the same phenomena as the
original only if their Reynolds numbers are equal.
Because this condition is not fulfilled in the case of the
rubber-cylinder model for small nematodes, the conclu-
sions drawn by 'Gray and Lissman are questionable. To
establish the hydrodynamic similarity in this case, one
would have to place the rubber cylinder in a highly
viscous liquid instead of water (Niebur, 1988).

MODEL OF VERMIFORM BODIES WITH
HYDROSTATIC SKELETONS

Alm of the model and assumptions
In this Section, we develop a mathematical model of the
locomotion of a worm which has a hydrostatic skeleton
such as C. elegans. Our model takes into account the
forces which are exerted by (a) the pressure of the liquid
in the pseudo-coelom of the worm, (b) the elastic forces
of the cuticle, (c) the muscular forces, and (d) the
frictional forces resulting from the interaction between
the worm and its environment. It is explained in the
previous section and in the next section why other forces
can be neglected. We obtain the equation of motion in
the form of a system of coupled first-order ordinary
differential equations. The simulation of the motion of
the nematode is achieved by solving this system of
equations numerically on a computer.
Other assumptions will be discussed in detail when-

ever they are introduced. Here we list them for refer-
ence: (a) the liquid pressure is the same everywhere in
the pseudo-coelom, and the total body volume is con-
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served within specified limits (see, e.g., the next section,
"Forces exerted by the environment"); (b) the elastic
forces of the cuticle depend linearly on the length of the
segment in which they act. A small elastic constant is
chosen for small deviation from the equilibrium length,
and a large constant is used if the deviation exceeds a
certain limit, or if the cuticle is stretched perpendicu-
larly to the local body axis; (c) the muscular forces act
parallel to the local body axis; (d) the coefficient of the
frictional forces is smaller for longitudinal than for
transversal motion.

Further, it is assumed that either the head or the tail
execute a periodic sideways motion which leads to a
sinusoidal body shape.

Definition of the two-dimensional
model
We approximate the body of the worm by a cylinder of
length 4c and of radius rc. (In fact, lc and rc refer to the
state of the body with forces absent. The actual length
and radius depend on the forces which act on the body
wall and which will be introduced below.) Because we
are interested in the movement in a plane, namely on the
surface of the agar layer, we consider the projection of
the cylinder on this plane. The outline of the projection
is a closed curve which is shown in Fig. 1. For the
simulation, N points are distributed on the left side of
this curve andN points on its right side, so that the curve
is divided in (N - 1) segments. The term "segment"
should not be understood in the sense that all the
segments are identical or that their shape is fixed.
Instead, all segments can change their size and their
shape under the influence of the forces.
We denote all vectors with bold characters. The ith

segment is described by the four points by which it is
limited: xr(i) and xr(i + 1) on the right side of the body,
and x,(i) and x1(i + 1) on the left side (see Fig. 1). Left
and right are defined arbitrarily, but once and for all, we
adopt the definition shown in Fig. 1. We use the
subscripts r for right and 1 for left. The following
equations are meant to be valid for all values of the
index i for which the equation makes sense, i.e., either i
E 1,. ..., N} or i E 11, ... , N - 1}, unless noted other-
wise.

Let us define

. c
xi =

ui = A cos (kri),

(1)

(2)

where k is the wave number andA the amplitude of the
sinusoidal wave which is formed by the body of the worm
(k > O,A > 0).

We suppose that at t = 0, the coordinates of the points
xr(i) and x#(i) are given by

XXOi = (:so(), s = r, I

Xs(i) = ij -

ys(i) = A sin (kli) + ',1+U
2

(3)

(4)

(5)

It follows from Eqs. 3-5 that the midpoints of the body,
defined by

X(i) = CC(i)) = 1/2 [Xl(i) + X(i)],

are situated on a sine curve:

yc(i) = A sin [kx,(i)]

(6)

(7)
Fig. 1 shows the shape of the body which is defined by
Eqs. 3-5.

FORCES ACTING ON THE BODY

Interior pressure
Letp (t) be the pressure of the liquid which is contained
in the body cavity of the worm (in nematodes, the
pseudo-coelom). We assume that the cavity is not
subdivided, which is the case for nematodes. It follows
that the pressure is the same in all segments. The
pressure at the borderline between two segments has no
effect, because the forces involved are equal and oppo-
site. For this reason, we have to take into account only
pressures which act on the body wall. In our model, the
body wall is represented by the two lateral limits of each
segment, except in the case of the final segments (i = 1
and i = N - 1), which have three limits in contact with
the exterior. We approximate each segment by a block,
which lies on the plane of locomotion and whose height
is 2r,.
The pressure is time dependent, because the volume

of the liquid, which we assume to be incompressible, is
constant. Numerically, we have enforced the constant-
volume constraint as follows: we define the vectors d(i)
and e(i), which are directed along the diagonals of
segment i, by,

d(i) = xr(i + 1) -x(i)
e(i) = xr(i) - x,(i + 1).

(8)

(9)
Let p(O) and V(O) be the pressure and volume of the
worm, respectively, at time t = 0. We calculate the
volume V(t) from the shape of the body at time t, using
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FIGURE 1 Two-dimensional model of the vermiform body, as defined by Eqs. 3-5 forA = 3rC and k = 37rlJ-'. The parameters given in Table 2 are
used. Each one of the points (x#(i);x,(i) for i = 1, 2,.. .,N) is connected to its neighbors by a line. Segment 1, which is limited by the points x,(1),
x,(2),x,(1), andxr(2) is shown with horizontal hatching. SegmentN - 1 (i.e., segment 19), which is limited by the pointsx,(N - 1),x,(N),x,(N - 1),
andx,(N) is shown with vertical hatching. In the inset, the length of each one of the 19 segments is plotted against the segment number. The full line
represents the segment length on the left body side, i.e., Ix,(i) - x,(i + 1)1 vs. i, and the dotted line represents the segment length on the right body
side, i. e., Ixr(i) - xr(i + 1)1 vs. i. The quantities l, and 12, defined in Eq. 26 are indicated on the vertical axis. The mean length of all segments, 'M' is
defined in Eq. 50 and is represented by a horizontal line.

the formula,
N - I

V(t = 2rC Pd)(i)e°y(i) - d (y(i>(0)(i) 1 (10)

where the superscripts refer to the corresponding com-

ponents of the vectors.
The pressure at time t is then calculated from V(t) by

p = ((11)

where a is a positive integer. (In this equation, p is
dimensionless, i.e., divided by the unit of pressure.) We
used a = 4, a = 6, or a = 8 with nearly identical results.
For all these choices, we obtained, for the muscular
forces used in the simulations, that

V(t) V(0) < 10-2 for allt.

This shows that the volume remains reasonably con-
stant. We will write p instead of p(t) in the rest of this
paper, to simplify the notation.
The interior pressure of some nematodes has been

observed to change by more than a factor of 2. This has
not been observed in C. elegans., but if it were the case, a

large value of a in Eq. 11 would allow for such pressure

changes while keeping the volume nearly constant. The
results with a = 4, 6, or 8 indicate that the conclusions of
this paper will remain valid for higher a as well. Because
the contents of the pseudo-coelom is no ideal liquid,
volume changes are expected at very high pressure.

Because we consider vectors in a plane, for each such
vector X, we can define another vector Xl in this plane
such that X * Xl = 0 and X, * Xl = X * X. The vector Xl,
which will be called "orthogonal to X," is defined by the
two equations in the last sentence, except for its sign.
For the Eqs. 12, 14, and 16, this sign will be determined
by the sign of the scalar products in the inequalities (13),
(15), and (17), respectively.

Let us consider one of the interior segments. We
introduce the term "pressure force," defined as the
force exerted at the point xr(i) that is proportional to the
interior pressure and to the surface area of the segment
(see Fig. 2). It is directed perpendicularly to this surface:

F(sP)(i) pr.[x,(i + 1) x,(i 1)] s = r,l;

ie{2,...,N-21, (12)

and it is directed outward from the body. This is the case
if the sign of FVP)(i) is determined by requiring,

F(rP)(i) * [xr(i) - x(i)] > 09 i E- I1.. N- 1|. (13)
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FIGURE 2 The interior pressure exerts forces on the body wall which are directed outwards. The figure shows a part of a vermiform body, whose
body wall and the limits between segments are shown by thin lines. The pressure forces acting on two points,x,(5) andxr(1), are shown. The former
is an interior point on which the force F(P)(5) acts, cf Eqs. 12 and 13. The latter is a boundary point, on which the forces F(P)(1) and F,(1) act, cf Eqs.
14, 15, and 18. The parts of the body wall on which these pressure forces act are represented in the figure by thick lines.

The force which acts on the point x,(i) is obtained by the
same expressions, after interchanging the subscripts r
and 1.

Let us now consider the pressure forces in the final
segments (segments 1 andN - 1). One half of the force
on the right lateral surface of segment 1 acts on x,(2).
This is taken into account in Eqs. 12 and 13. The other
half of the force acts on xr (1), and is given by

F(PI(1) = pr,[x,(2) - x,(1)J,, (14)

where

rF(PI(1) * [x,(l) -x,(1)1 > °. (15)

The pressure on the face of the cylinder (see Fig. 2) gives
rise to another force, half of which acts on x;(1) and the
other half on x,(1). The force acting on each of these
points is F,(1), calculated as

F,(l) =pr.[x,(1) -x,(l)],

where the sign of F,(1) is determined by requiring

Ft(l) [x,(l) - x,(2)] > °.

(16)

The pressure forces acting on x,(1), xr(N), and x,(N) are
obtained analogously.

Forces of the elastic cuticle
Our model of the cuticle consists of elastic elements
between neighboring points of the cuticle. The neighbor
points of xr(i) are xr(i - 1), xr(i + 1) and x#(i), and the
neighbor points of x#(i) are x#(i - 1), x#(i + 1), and x,(i).
We will first introduce the elastic forces between con-
tralateral points [like xr(i) and x#(i)] and then the forces
between the ipsilateral points [like xr(i) and xQ(i + 1)].

It is observed experimentally that the body diameter
of nematodes is practically constant in time. This is
taken into account by assuming that the elastic element
between xr(i) and x#(i) exerts the following force on xr(i):

(19)

where k1 is a positive constant. The elastic element
exerts the negative of this force on x#(i):

F(e)(i) = -F(e)(i).

The total pressure force which is exerted by the interior
pressure on the point xr(1) is thus

F(P)(1) + Ft(1). (18)

If the diameter of the segment is equal to 2rC, it follows
from Eq. 19 that F(e)(i) = F(e)(i) = 0. If the diameter is
different from 2r, the forces will try to reestablish this
equilibrium situation.

Nibu andE. Thor of the Loooto of Neaoe
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'I xi(i) X#)F(')(i) = k,r 2r, - 1 Ixi(i) x,(i)ll
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If kL is sufficiently great, the distance between x#(i)
and xr(i) will differ only very little from 2r,. We have
chosen

[xr(i + 1) - Xr(i )]. It is defined by
1

F(e)(i, i + 1) =f(e)(ij i + 1) - -4 xr(i + 1) - xr(i)1,r r ~~~~~~~lr(')
kL = 103 * kl, (21)

where k,, which will be defined in Eq. 26, is an elastic
constant of the forces between ipsilateral points.
We will treat now the ipsilateral forces. The segments

can be easily deformed when their length is close to the
equilibrium length 1, but they resist strongly both exces-
sive stretching and compression (see Fig. 3).

Consider the right side of the body. Let F(e)(i, i + 1) be
the force (note that the contralateral forces have only
one argument, e.g., F(e)(i), and the ipsilateral forces have
two arguments, e.g., F(e)(i, i + 1)) which is exerted on the
point xr(i) by the elastic element between the points xr(i)
and xr(i + 1). It follows that this element exerts on the
point xr(i + 1) the force

F(e)(i + 1, i) = -F(e)(i, i + 1). (22)

The force F(e)(i, i + 1) is collinear to the vector

1 F
2 a

1
1 1

1 0 2

r()

FIGURE 3 Elastic force assumed to act between two ipsilateral points,
i.e., end points on the same side of a given segment, as a function of the
distance between them. fP,)(i, i + 1), defined in Eq. 25, is plotted as a
function of lr(i), defined in Eq. 24. The ordinate is proportional to the
force acting along the two endpoints of the segment; the abscissa is the
distance between these points. The slope has the value k2 for l(i) < 11,
k1 for 1 < 1(i) < 12, and k3 for l(i) > 12. This ensures that the force is
small when the cuticle is only slightly stretched or compressed, but is
large when the cuticle is overstretched or overcompressed.

where

lr(j) lXr(i + 1) -Xr(i) I,

f ()(i i + 1)

k3 * [r(i) -12] + k, - [12- 1] + V12Fa if l(i) > 12
= k2 * [1r() -11] + k, * [1 -lo] + 1/2Fa if 1(i) < 11

k, [lr() - 101 + Y12Fa otherwise.

(24)

(25)

The function f (e)(i, i + 1) reproduces the characteristic
behavior of the force shown in Fig. 3.

In the numerical work, we have used the following
values:

k = F.
10

k2 = k3 = 1Ok,;
Fa = 4p(0)r ;

11 = 1

NN;

lo = 5/411;

12 = 3/211- (26)

The elastic forces defined in Eq. 23 are in equilibrium
with the pressure forces generated by an interior pres-

sure p(O) if all segments have the length 10 and if
[xr(i) - x#(i)] = 2rc for all i.

The forces of the left side are obtained analogously.

Muscle forces
It was noted previously that the main (somatic) muscula-
ture of nematodes consists exclusively of longitudinal
muscles. For this reason, we introduce model muscles
which exert contracting forces between neighboring
ipsilateral points. We consider the right side of the body;
the results for the left side are obtained by replacing all
subscripts r by 1. Let FVm)(i, i + 1) be the force which is
exerted at the point x;(i) by the muscle acting between
xr(i) and xr(i + 1). The same muscle exerts the force,

F(m)(i + 1, i) = -F(m)(i, i + 1), (27)

on the point x#(i + 1). The force F(m)(i, i + 1) is collinear
to xr(i + 1) - xr(i), and it has the same direction. In our

model, its absolute value is

IF(m)(i + 1 i)I =f(m)(i) * k, * 1o; i E- (2, .. . NN-2}. (28)
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Here, f (m)(i) is a dimensionless number which depends
on the excitation status of the motor neurons which are
presynaptic to the muscles in segment i. This number
expresses the proportionality between the muscle force
in segment i and the elastic force in a segment in
equilibrium with the average (i.e., constant) pressure
forces.
The set of numbers

If (m)(i);f (m)(i) for i = 2; 3; ... ; N -21

defines the "excitation pattern" of the muscles of the
body in the sense that the number f (m)(i), (s = r, 1) is
proportional to the momentary amplitude of the muscle
force in the segment i. The muscular force is identically
zero in the first and last segments (i = 1 and i = N - 1).
In the section on computer simulation of undulatory
locomotion, we will study those excitation patterns
which lead to the undulatory locomotion of the worm.

According to Eq. 28, the muscular force does not
depend on the length of the muscle. Indeed, the ob-
liquely striated muscles of nematodes develop forces
nearly independent of their length (Toida et al., 1975).

Forces exerted by the environment
The mass of a C. elegans is 5 * 10- kg. The maximal
acceleration produced during the creeping of this nema-
tode on a solid surface is of the order of 10-3 m/s2. It
follows that the inertial forces during this movement are
-5 * 10-2 kg m/s2.
The actual forces that a creeping nematode exerts on

its support have not been measured. To determine these
forces at least approximately, Wallace (1969) measured
the friction forces needed to draw glass fibers of the
same size as a small nematode over an agar surface. He
found forces between 17 - 10-6 kg m/s2 and 72 * 10-6 kg
m/s2, depending on the concentration of the agar.
To move, the worm has to exert forces on its environ-

ment which equal or exceed the frictional forces. Be-
cause these forces are by several orders of magnitude
greater than the inertial forces, we will neglect the latter.

Let x,(j), s = r, 1 be the position of one of the 2N mass
points, introduced in Eq. 1 and shown in Fig. 2. The
ensemble of the vectors x,(j) describes the position of
the body at a given time t, but we do not write the
variable t explicitely. The velocity of the point x,(j) is
v,(j), i.e.,

d
vr.(j) -dtx,(j), s = r, 1 (29)

We can resolve v,(j) in the components vSL(j) and vl(j),
which are longitudinal (L) and normal (N) with respect
to the local body axis at the point x,(j). By t(j) we

denote a unit vector in the direction of the local body
axis, i.e.,

(30)

In a good approximation t(j) is independent of s, hence
we omit this subscript. Then

vL(j) = [v(j) t(j)]t(j), j E {2, . .. ,N - 11, (31)

and

(32)
For the endpoints of the model worm we have

vL() = [v(1) _ t(j)]t(1), (33)
and

VL(N) = [V(N) t(N - 1)]t(N - 1). (34)
We formulate now our model of the exterior, frictional
forces, which act between the worm and its environment.
We assume that these 2N forces, acting on each of the
pointsx,,(j), are of the form

Fs(j) = -CLV (j) - CNVN(j), s = r, 1, (35)
where CL and CN are positive constants. Note that, in
principle, the frictional forces are proportional to the
length of the body segment, i.e., the distance
Ix(j + 1) - xs (j)1. For the sake of simplicity, we as-
sumed an average of the periodically varying segment
length.
The physical reason for Eq. 35 is the following: the

body is lying in a groove on the agar surface (see section
titled Environment). If the elements of the body move

perpendicularly to the local body axis ("transversal
slipping"), they must either leave or deform the groove.
If, on the other hand, each body element moves tangen-
tially to the local body axis ("longitudinal slipping"), all
elements (with exception of the first in the direction of
movement) stay in the groove. We assume that the force
needed to leave or deform the groove is greater than the
force needed to slither tangentially in it. This is ex-

pressed by Eq. 35, if CN >> CL. We chose CN = 10,000 CL.

We also did calculations with smaller and larger ratios
CNICL, with essentially the same results as the ones which
will be presented below.

There is evidence that C. elegans amplifies the effect
of the high ratio CN/CL by the anatomical structure of its
cuticle. The evidence consists in the longitudinal ridges
(alae) which run along the body of C. elegans in that part
of the skin which is in contact with the support (Cox et
al., 1981). We suggest that the function of these ridges is

NIeDk _ran rT__y t L o n Tt1I._ .o. o.

t(i) = xXi + 1) xXi 1)
xXi + 1) xs(i 1) I'

v N(j) = V(j) VL(j).
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to augment the ratio of the coefficients of friction for
longitudinal and transversal slipping.

TRAJECTORY CONTROL

quantity d as

d = 2x,(N) + 2xr(N) - x,(N - 1) - x,(N - 1). (36)
In analogy to Eq. 2 and using the same constantsA and k
as there, we define a quantity u by

Let us assume that the worm's body is initially in a
sinusoidal shape and that the neural system generates
muscle excitation patterns which are suitable to propel
the body either forwards or backwards. If only the forces
considered until now are taken into account, the first
segment of the body (in the direction of motion) will
move along the tangent to the first segment of the
trajectory. When the motion continues, this tangent will
not change if it is determined by Eqs. 30-33. Because
each element of the body follows the preceding one, one
might expect that eventually the whole body will be lying
along a straight line. Because only curved parts of the
body contribute to the propelling force (see, e.g., Gray,
1953; Erdos and Niebur, 1990), it will come to a stand
still. This is indeed observed in a computer simulation,
when Eqs. 32 and 33 are used to describe the motion of
the head and tail.
The worm solves this problem in such a way that its

head does not follow the tangent of its own trajectory,
but wiggles left and right as it moves forwards. This
generates the curvature of the body which is necessary
for its propulsion. The movements of the head of C.
elegans are performed by a set of muscles which receive a
more detailed innervation than the somatic musculature
in the other parts of the body. We do not attempt to
explain in detail the function of the neurons which
control the movement of the head. Instead, we suppose
that they are capable of controlling the head muscles in
such a manner that the nematode's head advances along
a sinusoidal trajectory. Our assumption of a sine curve
for the wavelike trajectory is not essential, but simplifies
the calculations.
Hence, the position of a point was calculated, towards

which the head would turn during the next phase of
motion to assure a sinusoidal track. Because the body
glides much more easily along the groove than perpendic-
ular to it (see previous section), it suffices for the head
muscles to direct the head towards this point. The rest of
the body will then follow the first segment, i.e., the head.

In the mathematical simulation of the motion, this
procedure was implemented by controlling the direction
of the tangent for the head segment. (Note that no
external force was applied to the head segment. The
contrary would be unrealistic and could be misleading in
a simulation, since it might lead to a movement of the
worm without the use of its muscles.) Let us define a

u = A cos (kd). (37)
We can now determine the point X to which the head
must be directed:

X=9 (38)

with

u
X = d ++

and

-u
Y = A sin (kd) + (40)

Here, the upper or lower sign applies for s = r or s = l,
respectively. These definitions enable us to write down
the formula which replaces Eq. 34 and has been used for
the head

vsL(N) = [vs(N) * n]n,. (41)
where n, is a unit vector in the direction of X - x,(N).
Similar equations were developed for the tail segment
(i = 1).

EQUATIONS OF MOTION

According to Newton's second law, the inertial forces
(i.e., mass times acceleration) acting on a body equal the
sum of all other forces acting on the body. These other
forces are the interior forces (caused by pressure, cuticle
elasticity, and muscles), and the forces of friction result-
ing from the interaction with the environment. As
explained in the section titled Forces exerted by the
environment, inertial forces can be neglected.

Let Fr(j) be the sum of the interior forces which act on
the point xr, on the right side of the body, i.e., Fr(j) is the
sum of the forces resulting from the interior pressure,
the muscles, and the elastic cuticle:

Fr(j) = FIPI(j) + FIM (j,j - 1) + F(m)(j,j + 1)
+ Flc)(j) + Fle)(j,j - 1) + F,e)(j,j + 1). (42)

The forces appearing on the right-hand side of Eq. 42
were introduced in earlier sections. This equation is

114 ipyia ora oue6 oebr19

(39)
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valid, as it stands, for interior segments. The correspond-
ing expressions for the ends, i.e., forj = 1 andj = N, are
analogous.

Let F(L)(j) be the component of Fr(j) which is parallel
to v(L)(j), i.e., the longitudinal force, and let F(N)(j) be
the component of Fr(j) which is parallel to v(N)(j), i.e., a
force transverse to the body axis. From Newton's second
law, which can be stated as

From these equations, it follows
N

E [F,(j) + FI(j)] = 0.
j=1

(49)

The fulfillment of these conditions was continuously
monitored during the calculation to assure the accuracy
of the results.

Fr(j) + F(t)(j) = 0, for all j,

where F(f)(j) is the frictional force (35), and from Eq. 34,
we obtain,

d
L()-x (L)(j) _FL)(j), (43)

t CL

d
x()

1
N

dtXr( ) - FN(J). (44)

The vectors xL(j]) and xN(j) are defined by these
equations, i.e., by the time integral of the longitudinal
and normal velocities introduced in (31 and 32). If the
initial conditions are chosen correctly, we will have

XI(j) = xL(j) + XN(j),

at all times. For the points on the left of the body we

obtain

d
L)

1
Lj)

- x(L) ) = F(L)(j), (45)
dtCL

d 1

dX(tj) = -F, (i) (46)
CN

It is evident that the forces Fr(j) and F,(j) and the
coordinates xr(j) and xl(j) are functions of time. We do
not write the argument t.
The Eqs. 43-46 form a system of 4N ordinary differen-

tial equations. No analytical solution of this system is
known, because the forces Fr(j) and F,(j) and their
components are nonlinear functions of the set of coordi-
nates. The simulation of the movement of the nematode
is obtained by solving this system of equations numeri-
cally, with the initial conditions given in Eqs. 3-5.

Note, that it follows from the definition of the forces
introduced, that the sum of all interior forces vanishes. It
is easily verified that

N

2 [F(z)(j) + F(z)(j)] = 0, z = p, e, (47)
j=l

N-1

[F(z)(j,j + 1) + F(z)(j + 1,) = 0,
j=1

z=e,m;s=r,l. (48)

COMPUTER SIMULATION OF UNDULATORY
LOCOMOTION

In the first part of this section, we will give the numerical
parameters used for the computer simulation. Subse-
quently, we will describe the computer model used for
simulating the stretch receptor control, and present the
results of the computer simulation.

Mathematically, the computer simulation consists of
the numerical solution of Eqs. 43-46 with the initial
conditions given in Eqs. 3-5. The solution is obtained by
the use of the Backward Differentiation Formula (see,
e.g., Press et al., 1986). The computing algorithm used
variable time steps: when the results converged well,
automatically longer time steps were used; in case of bad
convergence the time steps were diminished.
The equation of motion is a stiff equation in the range

of parameters which interests us. We solved it using the
backward differentiation method in the form of an
algorithm written by us, as well as by means of a
commercially available scientific subroutine package
(NAG, 1987). The results were practically identical, but
the NAG routine proved to be considerably faster and
was used for all results presented in this manuscript. The
nonlinear equations arising from the backward differen-
tiation method were solved using a modified Newton
method. On entrance, the routine performs a local error
Petzold test. The tolerance was chosen such that the
absolute error does not exceed 10-7 and the relative
error does not exceed 104 for any of the 4N equations
(using the maximum norm).

Furthermore, different tests were carried out during
the integration of the differential equations, such as a
check on the accuracy to which the Eqs. 47-49 were
satisfied. Any result which led to a violation of relative
order 10- or more of any of these equations was
rejected and recalculated from the previous time step
with higher requirements on the tolerance. This hap-
pened rarely with our own backward differentiation
routine and never with the NAG routine.
The calculation of the data shown in Fig. 4 required

several hours of CPU time of a Cray-2 supercomputer.
The details of the numerical calculations may be found
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FIGURE 4 Position of the center-of-mass of the simulated worm as a
function of time. The three ascending curves show the x-coordinate of
the center-of-mass for g = 0.1, 0.15, and 0.2, respectively; see Eq. 54.
The lowest curve, marked by y, represents the y-coordinate of the
center-of-mass forg = 0.1. Like the corresponding curves forg = 0.15
and g = 0.2 (not shown), the curvey is very close to zero, which shows
that the worm moves almost exactly parallel to the x-axis. The
amplitude and the wavelength of the body wave areA = 12 10-5 m and
k = 12'r * 10-5 m, respectively. The frequency of the waves is 0.43/s
(g = 0.1), 0.33/s (g = 0.15), and 0.25/s (g = 0.2).

in (Niebur, 1988). One reason for the length of calcula-
tions is the fact that if one segment of the body contracts,
the pressure changes in all segments, so that there is a
link between all segments and not only between adjacent
ones.

Initialization and numerical
solution procedure
Table 2 shows the numerical values which have been
used for the computer simulation of a creeping C.
elegans. The radius r, and the length 4c of the cylinder,
which approximates the body of the nematode, are
experimentally known quantities. The other parameters

TABLE 2 Parameters used for the simulations

ll[m] rc[m] p(0)[Pa] cL[kg/s] cN[kg/s] N

l0o- 4. 10' 104 1.6- 10-3/N 16/N 20

l: equilibrium body length; rc: equilibrium body radius; p(0): equilib-
rium pressure of body liquid; CL, CN: longitudinal and transversal
friction coefficients; N: number of model body segments.

in Table 2 are not known from experiment and must be
chosen on the basis of plausibility arguments.
The pressurep(O) of the intestinal liquid is chosen as

104 Pa, which is the mean value observed in Ascaris 1.

(Lee and Atkinson, 1976). The tangential friction coeffi-
cient CL has been chosen such that the simulated worm
moves with a velocity of the order of 1 mm/s, which is
the typical velocity of a creeping C. elegans. The perpen-
dicular friction coefficient CN is supposed to be much
greater than CL; we have chosen CN = 10,000 CL. The
simulation shows that the simulated worm creeps practi-
cally without lateral slipping for this ratio of CN to CL. The
number of segments has been chosen as N = 20 for all
calculations whose results are shown below. We did
some simulations with lower and higher ratios of CN to CL,

and obtained essentially the same results.
Calculations were also done with N = 50 segments:

the results are not included because they show no

significant improvement upon those for 20 segments.
Calculations with 50 segments evidently require much

more computer time than work with 20 segments. In the
test runs made with 50 segments, the character of the
motion was the same as that obtained with 20 segments.
The motion was smoother, in that the variation of the
speed manifested by the wiggles in the curves showing
the center-of-mass coordinate vs. time (Fig. 4) was

smaller.
The cost of computation is roughly proportional to the

cube of the number of equations. Therefore we felt that
it was not justified to repeat all our computations using a

finer segmentation of the body.
For t = 0, the shape of the simulated worm is given by

Eq. 3 and shown in Fig. 1. This shape is chosen as a

convenient starting point for the simulation. The devel-
opment of this initial state as a function of time is
determined by Eqs. 43-46.
A trial simulation was first done under the assumption

that the body muscles are not excited, i.e., f(m)(j) =

f (m)(j) = 0 for all j. The body did attain a resting state,
with vanishing left-hand sides in Eqs. 43-46. (In fact, the
state attained is metastable, because for CL < Xo and
CN < °°, the body is in a stable state only if it is straight.
This can be seen, for example, if CL is chosen as in Table
2, and CN = 2CL. In this case the worm's body is nearly
straight after - 10 s of simulated time.) It did not move
either forwards or backwards as can be seen in Fig. 5,
which shows the body's position after t = 2 s.

Muscle control by stretch receptors
Muscle forces must be introduced to obtain active
motion. In the following, we will present muscle excita-
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FIGURE 5 Computer simulation with vanishing muscle forces. The
figure shows the shape of the worm after t = 2s, the shape at t = 0 being
described in Fig. 1. The resting state has been attained and the worm
has not moved forward. Its position is the same as at t = 0 (Fig. 1) (cf
Section titled Initialization and numerical solution procedure). For
the meaning of the inset, see the caption of Fig. 1.

tion patterns which lead to a sinusoidal movement of the
worm.

We will now discuss local control, i.e., the control of
individual muscles. If the worm is to move forward, the
forces exerted by the nematode on its environment must
be such that the reaction forces provide a net forward
thrust to the body. Suitable muscle excitation patterns
have been identified for the analogous problem in
snakes (Gray, 1953). The existence of a rigid backbone
facilitates the analysis of the forces in snakes, because
the forces acting on each vertebrum can be analyzed
separately. In nematodes, the problem is more compli-
cated, because all body parts interact with each other via
pressure changes in the pseudocoelom. Therefore, we

resorted to computer simulations to find excitation
patterns that lead to forward movement.
There are several solutions to the problem (Niebur,

1988). We are here concerned only with the one which
can be generated by stretch receptors in C. elegans.
These stretch receptors, which have been postulated
first by R. L. Russell (personal communication) on

morphological grounds but have not been unequivocally
identified yet, are situated approximately a fifth of the
body length behind (with respect to the motion of the
body) the muscles they control. In the following, we will
formalize the control scheme and we will show in the
next section that this scheme is suitable for propelling
the nematode body.

It is shown in (Niebur, 1988) how the nematode
nervous system can exert a global control over the
somatic musculature, i.e., how the worm can change its
direction of motion (forwards or backwards) and stop.

We use again the subscript s to designate the side of the
body (left, 1, or right, r), and define a variable A which is
1 if the body moves in the positivex direction and is -1 if
the body moves in the opposite direction. The distance
between the sensitive part of a receptor and the muscle
it controls is assumed to be lJI5.

Let us define the mean length 1M of the N - 1
segments,

1

lM = 2N

N-1 N-1

.a x(i + 1) -x(j)I + aIX,(j + 1) - x(j) (50)
j=l j=1

Consider the following conditions on the length of
segmentj:

(51)

(52)

and

{2+-,-..;N-2} ifA=1;

IiiE N
2;...;N---l ifA1=-l.

(53)

Condition 51 is the model of an excitatory receptor
within a distance of Ic/5 from the muscle to be controlled
by it. Condition 52 restricts the muscle excitation to
those segments which are compressed to a length which
is greater than the average length of a segment. The
condition 53 defines the values ofj for which conditions
51 and 52 hold.
The muscle excitation pattern (see Eq. 51) is defined

by

Ig if the conditions in Eqs. 51-53 are fulfilled
f (m)( )s 0 otherwise. (54)

In this equation, g is a dimensionless number which is
usually chosen as a fraction of unity.

It would be more realistic to assume that the muscle
excitation is a continuous process and not abrupt as

described by Eq. 54, but this would complicate the
model.

NEMATODE LOCOMOTION

An example of a muscle excitation pattern generated by
stretch receptor control is shown in Fig. 6. The pattern is
similar to that which is used by a creeping snake (cf
Gray, 1953). The calculation shows that the simulated
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FIGURE 6 Muscle control by stretch receptors. To illustrate the stretch receptor control, one segment (the ninth) is marked by a thick arrow, both
in the figure and in the inset. It is seen that the length of this segment on the right side of the body is greater than 1M (dotted line in inset), and it is
smaller than IM on the left side of the body (Jfull line in inset). Following Eq. 54 and using A = 1, the muscles of the right side of segment 13 are
excited, but not those of the left side. In the figure, excited muscles are represented by thick lines. Segment 13 is marked by a thin arrow, both in the
figure and in the inset. Note that the stretch receptor is located behind the muscle it controls because the worm moves in (+x) direction.

worm is able to move in its environment, from which it
follows that this pattern is suitable for propelling the
body. This proves that nematodes can control their
undulatory locomotion by stretch receptors.

Fig. 7 shows three successive phases of the motion.
Fig. 4 represents the coordinates of the center-of-mass
of the simulated worm vs. time. In each of these curves,
the gradient, which corresponds to the velocity of the

E0 ~ ~ ~ N~4J

x (mm)

FIGURE 7 Three successive phases of the motion of the simulated
worm as it is shown on the computer screen. The position of the worm
is shown at t = 0.8 s (bottom), t = 2.3 s (middle), and t = 2.8 s (top). To
avoid partial superposition, the lower and upper drawings have been
displaced from the middle one in the y direction. The worm moves in
the (+x) direction.

simulated worm, varies with time. This is due to the
acceleration of the body each time the head passes a

wave crest, because at that time a segment whose
muscles were not contracted previously, contracts, and
contributes to the propulsive force. This variation of the
velocity of the center of mass, which is not observed in a

moving nematode, is probably caused by the subdivision
of the body into segments. It is less pronounced ifN = 50
rather thanN = 20 is chosen (data not shown).
The three curves shown in Fig. 8 are obtained using

three different values for g, i.e., the amplitude of the
muscle force, which has been defined in Eq. 54. This
parameter is identical for all segments and can thus be
varied globally. It follows from the observation that the
mean slopes of these curves are different, that the worm
can vary its velocity by varying this global parameter.
This can be accomplished in the nematode neural
system by changing the excitation of the interneurons
presynaptic to the motor neurons.

Fig. 8 shows that our model also allows for a change in
the direction of motion. This is achieved by deactivating
the neural circuitry which is responsible for forward
motion, and activating the circuitry which is responsible
for backward motion, or vice-versa. In the calculation
shown, this switch is simulated by changing the sign of A
in Eq. 53, when the end of the worm has reached a

predefined value of x. As a result, the simulated worm
creeps back on its own track. This mirrors the behavior
of a real worm, when it changes its direction of motion.
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FIGURE 8 Changing the sign of A leads to the change of direction of
the movement. At t = 0, the motion is started with A = 1, and g = 0.2.
As soon as x, exceeds the value 1, which is the case at t = 2s, A takes
the value (-1) and the worm changes the direction of its motion. The
full line shows the x-coordinate of the worm's center-of-mass, and the
dashed line itsy-coordinate.

CONCLUSION

We have studied the undulatory motion of animals with
hydrostatic skeletons, in particular that of the nematode
C. elegans. We have identified the most important forces
which act on a creeping nematode, and established a
mathematical model of these forces. This makes it
possible to simulate with a computer the creeping of the
nematode. It is known from experiments that C. elegans
has two nearly distinct neural circuits, one for forward
and another for backward movement. We assume (a)
that the nerve ring activates one or the other of these
circuits, and that the level of activation determines the
velocity of the worm, and (b) that the detailed muscle
excitation patterns are not determined globally by the
nerve ring, but locally by stretch receptors in the motor
neurons which are presynaptic to the somatic muscles.
The computer simulation shows that these excitation
patterns can be produced by the action of stretch
receptors, for which anatomical evidence has been
observed by other work.
Some nematodes can vary the wavelength of their

motion over a range of at least a factor of four depend-
ing on the impedance of their surroundings. We have
not observed such a variation in C. elegans moving on dry
or wet agar or inside the agar. We are aware of the fact
that the wavelength of C. elegans increases appreciably
when the worm is swimming in water. This change of
body shape is always correlated with a change in the
physics of the environment. It is unknown whether the
changed body form is a consequence of a changed motor

pattern, which might lead to more efficient propulsion in
the respective environment, or whether it is due to a
(passive) deformation of the body. This passive deforma-
tion may be due to the fact that in different environ-
ments, different external forces act on the body even
though the muscles are controlled by the same motor
control program. The two environments, which are at
the extremes of the spectrum a nematode might encoun-
ter, are one in which the worm creeps without slipping
(and which is treated by our model) and one in which the
animal is swimming in a liquid of low viscosity, like
water. As we have shown previously, it is not easy to
treat the case of a swimming worm and to decide
whether the motor control pattern used for creeping
yields the observed body shape when the worm is
immersed in water. Our hypothesis is that this is the
case. Evidence in support of this hypothesis is provided
by the fact that nematodes always seem to have the same
wavelength in a given physical environment. If the
animals were able to change their motor pattern (and
thus their body shape) "at will," one might expect the
nematode to change its motor pattern also in response to
other factors than the mechanical impedance of the
surroundings, such as sensory stimuli. To the best of our
knowledge, this has never been observed.

In the absence of either experimental evidence or

more detailed model calculations (taking into account
inertial and viscous forces), our model remains a hypoth-
esis to be verified or refuted by further experiments.
A videotape has been produced by filming the actual

motion of a C. elegans and filming the graphical represen-
tation on a computer screen of the simulated results.
The simulation reproduces well the actual motion.
Copies of the videotape may be obtained from the
authors.

APPENDIX

Elsewhere we have developed a mathematical model for electrotonic
neural networks and applied it to the nervous system of nematodes
(Erdos and Niebur, 1990, Niebur and Erdos, 1988a, b, 1991). The
following results are relevant for the present work: Caenorhabditis
elegans (of length 1 mm) is the only animal of which the complete
neural circuitry is known at the submicroscopical level. This anatomi-
cal knowledge is complemented by functional insight from electrophys-
iological experiments in the related nematode Ascaris lumbricoides
(length - 1,000 mm), which show that Ascaris motor neurons transmit
signals electronically and not with unattenuated spikes.
We formulated partial differential equations for the intracellular

voltage of the neural processes, and solved them numerically. One of
the results is that the nerve ring (central nervous system) in the head of
C. elegans is capable of producing signals which, even though attenu-
ated electrotonically, are sufficiently strong to control all motor
neurons. Furthermore, we found that in Ascaris 1. the velocity of the
travelling neural excitation is close to the experimentally observed
velocity of travel of muscular waves. In C. elegans however, all observed
muscular waves propagate at least ten times slower than the calculated
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neural excitation waves. Therefore, the excitation wave cannot synchro-
nously control the muscular wave. From the observation of neural
processes of appropriate length, we suggest control by stretch recep-
tors, which transmit signals to muscles which are 1/4 body wavelength
anterior or posterior to the activated stretch receptors.
A prerequisite for this mechanism is the presence of two distinct

neural circuits for forward and backward motion: these circuits have
been experimentally identified.
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